





# Liquid Waste Top Ten Program Risks









Date: September 28, 2010

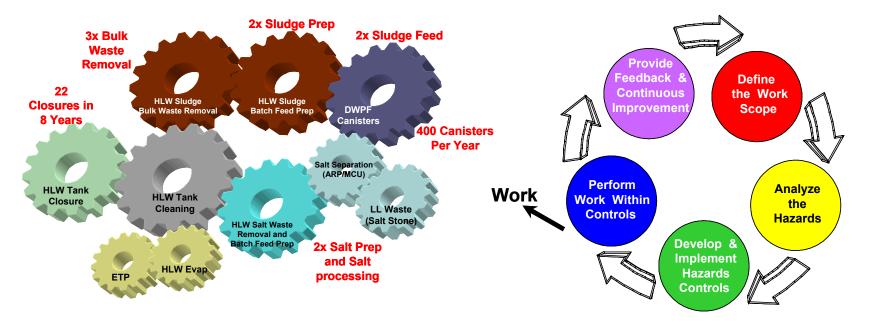
**Presenters:** 

Doug Bumgardner, Savannah River Remediation Sonitza Blanco, Department of Energy

**Event:** 

SRS Citizens Advisory Board

SRR-LWP-2010-00050




#### Program Risks not Hazard Management

We do the right thing.

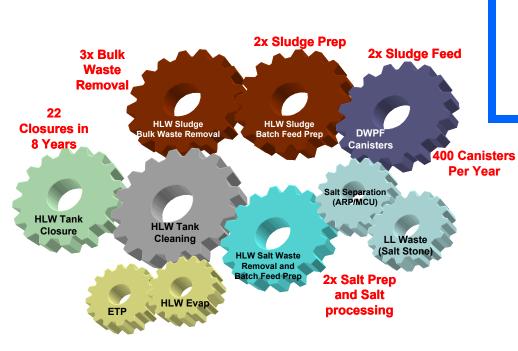






Program Risks relate to increase in overall cost or schedule of Liquid Waste Project

Integrated Safety Management System


Manages Hazards



# **Current Top Ten**







|                                                                                     | C                                                                                               |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1. Equipment Reliability                                                            | System Health Monitoring,<br>Maintenance Program and Spare<br>Parts                             |
| 2. Major System Failure<br>(for example, Melter or<br>Evaporator)                   | System Health Monitoring,<br>Spares, Development of Repair<br>Techniques                        |
| 3. Tank Space Availability when Needed                                              | Integrated System Planning                                                                      |
| 4. Tank Leak Sites Reduce<br>Useable Space                                          | Structural Integrity Program                                                                    |
| 5. Characterization of Waste                                                        | Early sampling and analysis, Development of robust processes to accommodate varying composition |
| 6. Technology Readiness                                                             | Testing, mock-up, lessons learned from DOE complex                                              |
| 7. Salt Waste Processing Facility<br>Start-Up Delayed or Processing<br>Rate Limited | Interim Salt Disposition Project,<br>Supplemental Salt Treatment<br>Processes                   |
| 8. Meeting Tank Cleanliness<br>Requirements for Closure                             | Use of new technologies included Enhanced Chemical Cleaning                                     |
| 9. Availability of Closure<br>Documentation                                         | Integrated Planning and<br>Development with Stakeholders                                        |
| 10. Integration/Coupling of Execution Activities                                    | Integrated System Planning,<br>Integrated Operations and<br>Projects Planning and Scheduling    |



## **System Health Process**

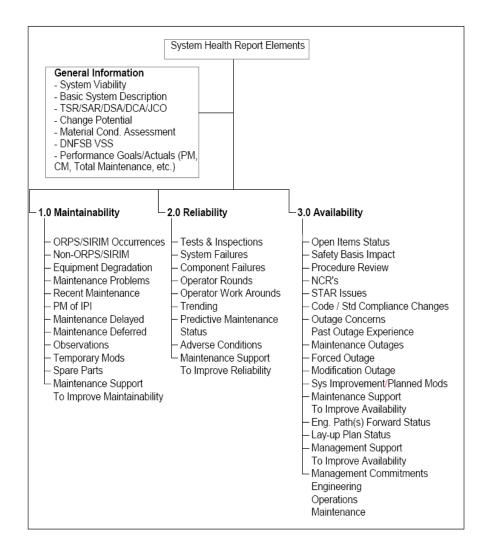
We do the right thing.





#### Formal reporting via two formats

- Performance Monitoring Report (short form-monthly/quarterly frequency)
- System Health Report (Formal Report-annual or biannual)

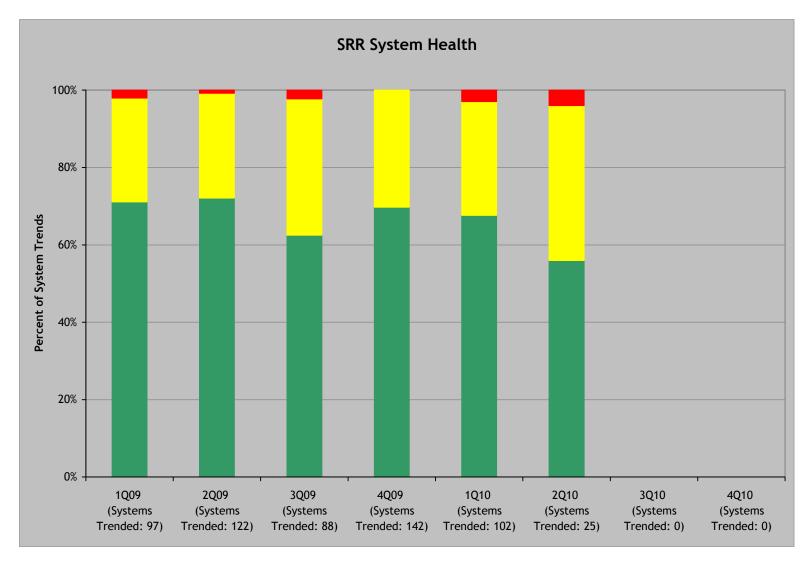

#### Performance Monitoring Report Topics:

- Overall summary including System Status Grading
  - Green-Available with no degradation, minor corrective issues, no adverse trends
  - Yellow-Available, but in a degraded condition requiring compensatory actions. Has persistent issues requiring maintenance. Degradation trend noted, but no an immediate issue.
  - Red-System is unavailable. System has high equipment vulnerability such as end of life with no spares, near term failure likely
  - Trend analysis-summary of key performance trends
  - Maintenance Impacts-notification of significant material condition or performance issues and maintenance history
  - System Walkdown Observations
  - Actions-identify new actions based on current review

Purpose is to ensure systems are performing as required and define actions to keep it that way for the mission life (viability)



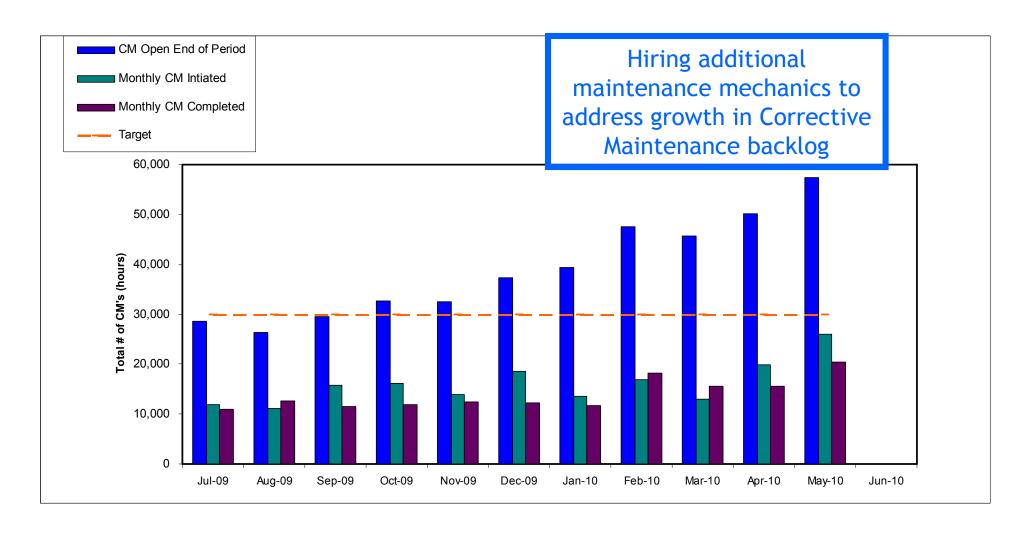
# 






# System Health Performance





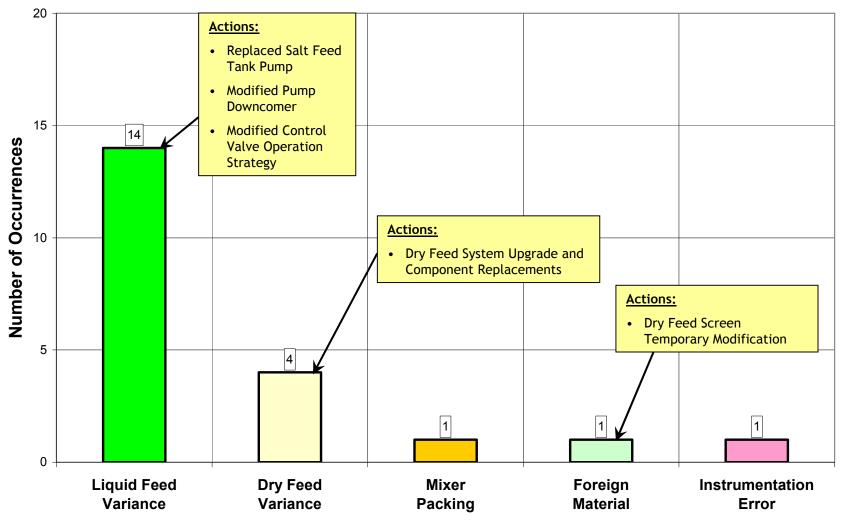





#### **Corrective Maintenance Indicator**








# **Process Performance Analysis**

We do the right thing.







#### **Unplanned Process Shutdowns**

December 2009 through July 2010









# Equipment Reliability Risk Examples





#### **DWPF Equipment Failure (Excluding Melter)**

#### Risk

 Equipment failure and lack of adequate equipment spares results in degraded facility performance and decreased canister production rates.

- Replenish assembled unit spares In Progress
- Revalidate spare equipment list Complete
- Verify spares are maintained on hand In Progress
- Procure additional spares as needed In Progress
- Projectize procurement of spares In Progress
- Investigate system life extension Complete

| Unmitigated Lifecycle Risk | Most Likely Residual Lifecycle Impact |  |  |  |  |
|----------------------------|---------------------------------------|--|--|--|--|
| Very Likely - 1 Year       | Likely - 6 Months                     |  |  |  |  |





# Tank Farm Equipment Failure (Excluding Transfer Lines or 3H Evaporator Pot)

#### Risk

 Equipment failure and lack of adequate equipment spares or unavailability of utilities results in unplanned facility outages.

- Initiate HTF Utility Services Upgrade project In Progress
- Revalidate spare equipment list Complete
- Projectize procurement of spares In Progress
- Investigate system life extension Complete

| Unmitigated Lifecycle Risk | Most Likely Residual Lifecycle Impact |  |  |  |  |
|----------------------------|---------------------------------------|--|--|--|--|
| Very Likely - 3 Months     | Likely - 2 Months                     |  |  |  |  |





#### Tank Farm Transfer Line Failure

#### Risk

 Tank Farm transfer line outer jacket degrades and as a result the transfer line cannot be used as required.

- Develop and deploy transfer line repair technologies In Progress
- Perform modifications to install additional protection In Progress Identify an alternate 2H evaporator concentrate receipt tank and be staged to perform conversion in the event of a Tank 38 Gravity Drain Line outer jacket failure - In Progress

| Unmitigated Lifecycle Risk | Most Likely Residual Lifecycle Impact |  |  |  |  |
|----------------------------|---------------------------------------|--|--|--|--|
| Likely - 1 Year            | Unlikely - 4 Months                   |  |  |  |  |







# Major System/Component Failure Risk Examples





#### Tank 49 Feed Pump Failure

#### Risk

 Transfers from Tank 49 to SWPF will be required every 21 hours. Failure of the Tank 49 to SWPF transfer/feed pump will result in a reduction in the SWPF throughput.

#### Handling

 Procure and install a redundant transfer/feed pump in Tank 49- In Progress

| Unmitigated Lifecycle Risk | Most Likely Residual Lifecycle Impact |  |  |  |  |
|----------------------------|---------------------------------------|--|--|--|--|
| Very Likely - 1 Year       | Avoided                               |  |  |  |  |





#### 3H Evaporator Pot Failure

#### Risk

 Failure of the 3H Evaporator pot impacts DWPF sludge batch preparation

- Prepare procurement specification for spare 3H evaporator pot- In Progress
- Procure a spare 3H Evaporator pot After RHS above

| Unmitigated Lifecycle Risk | Most Likely Residual Lifecycle Impact |  |  |  |  |
|----------------------------|---------------------------------------|--|--|--|--|
| Very Unlikely - 18 Months  | Very Unlikely - 3 Months              |  |  |  |  |



#### Saltstone Processing Facility major equipment failure

#### Risk

• Failure of an essential component impacts processing at Saltstone

- Identify and implement actions to optimize throughput to support ARP/MCU operations Complete
- Identify and implement actions to optimize throughput to support SWPF operations In Progress
- Evaluate alternatives to SPF to enhance capacity and reliability In Progress
- Projectize procurement of spares In Progress
- Investigate system life extension Complete

| Unmitigated Lifecycle Risk | Most Likely Residual Lifecycle Impact |  |  |  |  |
|----------------------------|---------------------------------------|--|--|--|--|
| Very Likely - 6 Months     | Likely - 6 Months                     |  |  |  |  |



## Summary



- Risk changes over life of program
  - Real-time evaluation of risks and monthly review
  - Annual formal Top-to-Bottom update of risks
  - Risk profile is improving
- Equipment Reliability and Major Equipment failures are top areas of concern
- Specific risks are analyzed by subject matter experts who identify executable Risk Handling Strategies
- Risk Handling Strategies are included on an Integrated Priority List









# Questions?



# **Grading of Programmatic Risks**

We do the right thing.





#### **Example Likelihood Criteria**

| Very Likely | ≤ 10 years |
|-------------|------------|
|-------------|------------|

10-25 years Likely

Unlikely 25-50 years

Very Unlikely > 50 years

Figure 3 – Risk Level Matrix

| Very<br>Likely   | Low | Moderate | High     | High     | High |
|------------------|-----|----------|----------|----------|------|
| Likely           | Low | Moderate | Moderate | High     | High |
| Unlikely         | Low | Low      | Moderate | Moderate | High |
| Very<br>Unlikely | Low | Low      | Low      | Moderate | High |
| n-credible       |     |          | Low      |          |      |

#### **Example Consequence Criteria**

\* Non-credible

-ikelihood (L)

Negligible < 3 month delay

Marginal 3-12 months delay

Significant 1-2 years delay

Severe >2 years delay Negligible Marginal Significant Severe (Critical)

\* Normally limited to assessing residual risks with Very Severe (Crisis) consequences

Consequence (C

Verv Severe (Crisis)

19



# **Example Risk Status Report**



|     |                                                                                               | Risk     | Status         |             |  |                    |                  | 14.1             |                                                          |                                                                                                                                                  |
|-----|-----------------------------------------------------------------------------------------------|----------|----------------|-------------|--|--------------------|------------------|------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ID  | Title                                                                                         | Level    | Review<br>Date | Transferred |  | Acceptable<br>Risk | Minor<br>Concern | Major<br>Concern | Remarks                                                  | Content changed from last upda                                                                                                                   |
| 134 | DWPF Impacted by<br>Chemistry/Rheology of Sludge<br>Waste Feed                                | Low      | 4/21/201       | 0           |  |                    | 0                |                  |                                                          | ments being investigated. Research has<br>entation of melter bubbler mixing is underway<br>r 2010.                                               |
| 36  | Sampling and Analysis of Salt<br>Feed to ISDP Shows SPF WAC<br>Cannot be Met After Processing | Low      | 5/5/201        | 0           |  | •                  |                  |                  | Batches are being sampled                                | and to date they meet the WAC.                                                                                                                   |
| 037 | DWPF Impacted by Chemistry of<br>Salt Waste Feed                                              | High     | 4/21/201       | 0           |  |                    | 0                |                  | Characterization data and or                             | acterization is being evaluated.<br>perating lessons learned during ARP/MCU<br>otimizing sludge batch compatibility with the<br>cessing at DWPF. |
| 040 | Salt Dissolution Results in the<br>Precipitation of Gibbsite                                  | Moderate | 5/5/201        | 0           |  | •                  |                  |                  | Investigating methods to avo                             | oid gibbsite formation.                                                                                                                          |
| 041 | Formation of Sodium<br>Aluminosilicate in a Salt Tank                                         | Moderate | 5/5/2010       |             |  |                    | 0                |                  | Developing flowsheets and avoid criticality.             | mathmatical models for salt removal that                                                                                                         |
| 042 | Salt Waste Heel or Tank Annuli<br>Waste Cannot be Processed<br>Through SWPF                   | High     | 5/5/201        | 0           |  |                    | 0                |                  | Developing a flowsheet with modifications.               | additional feed treatment or processing                                                                                                          |
| 045 | Higher Curie Sludge Impacts<br>DWPF Canister Production                                       | Low      | 5/6/201        | 0           |  | •                  |                  |                  | Sludge batch sampling, blen<br>are being performed.      | ding strategy development and qualification                                                                                                      |
| 148 | Sludge Physical Properties Cause<br>Delays in Meeting Sludge Feed<br>Objectives               | Low      | 4/19/201       | 0           |  |                    | 0                |                  |                                                          | raste are being determined and used in<br>hnologies that can tolerate variability in waste                                                       |
| 069 | Higher Than Expected Cs Levels<br>in Salt Solution Impact Processing                          | Low      | 5/5/201        | 0           |  | •                  |                  |                  | Batches are being sampled                                | and no concerns have been identified to date.                                                                                                    |
| 70  | Rogue Constituents in SWPF Feed                                                               | Moderate | 5/5/201        | 0           |  |                    | 0                |                  | Evaluating the need for additank sequencing / blending s | tional sampling and testing and developing strategies.                                                                                           |
| 71  | Unknown Physical Properties in<br>Heel Material During Mechanical<br>Heel Removal             | Low      | 4/20/201       | 0           |  |                    | 0                |                  | ECC is being deployed to ha                              | andle this risk.                                                                                                                                 |
| 74  | MCU Feed Requirements not met<br>by ARP Processing Strategy<br>(Filter Breakthrough)          | Low      | 5/5/201        | 0           |  | •                  |                  |                  | Robust filter design provides                            | protection and a basis to accept this risk.                                                                                                      |



# Example Risk Assessment Form

We do the right thing.



| PBS SR-001                                                    | 4                     | F                      | Risk Assessment Form                            |                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|---------------------------------------------------------------|-----------------------|------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ID Number: 012                                                | R                     | evision: 03            | 3 Last Date Evaluated: 8/12/2009 Status: Active |                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Statement of Residua                                          | l Risk: Premature fai | ure of installed spa   | are equipment leads                             | s to canister production downtime while a new replacement is procured.                                                                                                                                                                                                                                      |  |  |  |  |
| Residual<br>Likelihood:                                       | Likely                |                        | upon the 20+ yenstalled spare is                | ears of remaining operation of the DWPF, the potential for a premature likely.                                                                                                                                                                                                                              |  |  |  |  |
| Residual<br>Consequence:                                      | Significant           | judged to be           | up to 1 year in d                               | installed spare is estimated to cause a canister production outage period uration. Out-year residual impact of 1 year schedule delay, near-term ocure a new major equipment spare.                                                                                                                          |  |  |  |  |
| Residual Risk<br>Level:                                       | Moderate              |                        |                                                 |                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                               | NEAR TERM Resid       | lual Impact            |                                                 | Basis of NEAR TERM Cost and Schedule Impacts:                                                                                                                                                                                                                                                               |  |  |  |  |
| Residual Cost<br>Impact (\$K):                                | Best Case<br>10,000   | Most Likely<br>10,000  | Worst Case<br>10,000                            | Basis - Near-term residual risk for all cases is the cost to procure a new major equipment spare. (\$10M)                                                                                                                                                                                                   |  |  |  |  |
| Residual Schedule<br>Impact :                                 | 0                     | 0                      | 0                                               |                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                               | OUT YEAR Resid        | ual Impact             |                                                 | Basis of OUT YEAR Cost and Schedule Impacts:                                                                                                                                                                                                                                                                |  |  |  |  |
| Residual Cost<br>Impact :                                     | Best Case<br>0        | Most Likely<br>225,000 | Worst Case<br>450,000                           | Basis - Worst Case: Immediate premature failure of installed spare. Assume 1 year to procure and install replacement.  Most Likely Case: Spare equipment operates for 6 months before failure. Procurement                                                                                                  |  |  |  |  |
| Residual Schedule<br>Impact (Mos):                            | 0                     | 6 Mths                 | 12 Mths                                         | of a replacement begins upon installation of spare. Assume 6 additional months to complete procurement and install replacement.  Best Case: Spare equipment operates for 12 months and does not fail until a suitable replacement is available. No significant canister production downtime is experienced. |  |  |  |  |
| LIFE CYCLE Residual Impacts (total of Near Term and Out Year) |                       |                        |                                                 | Basis of <u>LIFE CYCLE</u> Cost and Schedule Impacts:                                                                                                                                                                                                                                                       |  |  |  |  |
| Residual Cost<br>Impact :                                     | Best Case<br>10,000   | Most Likely<br>235,000 | Worst Case<br>460,000                           | Residual impact based on total life cycle                                                                                                                                                                                                                                                                   |  |  |  |  |
| Residual Schedule<br>Impact (Mos):                            | 0                     | 6 Mths                 | 12 Mths                                         |                                                                                                                                                                                                                                                                                                             |  |  |  |  |

loading for sludge being processed). DWPF near-term canister production is based on revised sludge mass values. Production of salt-only cans is acceptable to DOE.

Event Comments: The risk of a premature DWPF melter failure is addressed under Risk 021. The failure to provide a spare DWPF melter is addressed under Risk 022.